
Developing OpenStep
Applications Using
NEXTSTEP 3.2 (Preliminary)
NineInchRule.eps ¬

BothLogosFront.tiff ¬

SunSoft Part No: 801-7650-01 NeXT Part No: 6452.00
Revision 02, April 1994 Revision 02, April 1994

FullRule.eps ¬

Solaris Porting Guide by SunSoft ISV Engineering, Michele Ann Goodman, Manoj Goyal, and
Robert A. Massoudi (Published by SunSoft Press and PTR Prentice Hall, ISBN 0-13-030396-
8. This book is available at local bookstores, or can be ordered directly from Prentice Hall
by calling (201) 592-2863
ã1994 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100
U.S.A.
All rights reserved. This publication is e protected by copyright. No part of this publication
may be reproduced in any form by any means without prior written authorization of Sun
and its licensors, if any.
ã1994    NeXT Computer, Inc., 900 Chesapeake Drive, Redwood City, CA    94063.
All Rights Reserved. [6452] NEXTSTEP Release 3 Copyright ã1988-1994 NeXT Computer,
Inc. All rights reserved.
Portions of this product may be derived from the UNIXâ and Berkeley 4.3 BSD systems,
licensed from UNIX System Laboratories, Inc. and the University of California, respectively.
Third-party font software in this product is protected by copyright and licensed from Sun's

Font Suppliers.
RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 ã(1)(ii) and FAR
52.227-19.
The product described in this manual may be protected by one or more U.S. patents,
foreign patents, or pending applications.
TRADEMARKS
Sun, Sun Microsystems, the Sun logo, Sun Microsystems Computer Corporation, the Sun
Microsystems Computer Corporation logo, SunSoft, the SunSoft logo, Solaris, SunOS,
ToolTalk, OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks or registered
trademarks of Sun Microsystems, Inc.
NeXT, the NeXT logo, NEXTSTEP, the NEXTSTEP logo, Application Kit, Database Kit,
Indexing Kit, Interface Builder, NetInfo, 3D Graphics Kit, and Workspace Manager are
trademarks of NeXT Computer, Inc.
PostScript and Display PostScript are registered trademarks of Adobe Systems
Incorporated. UNIX and OPEN LOOK are registered trademarks of UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc. All other product names
mentioned herein are the trademarks of their respective owners.
All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered
trademarks of SPARC International, Inc. SPARCstation, SPARCserver, SPARCengine,
SPARCworks, and SPARCompiler are licensed exclusively to Sun Microsystems, Inc.
Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.
The OPEN LOOKâ and Sunä Graphical User Interfaces were developed by Sun
Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of
Xerox in researching and developing the concept of visual or graphical user interfaces for
the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox
Graphical User Interface, which license also covers Sun's licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun's written license agreements.
X Window System is a trademark and product of the Massachusetts Institute of
Technology.
THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN
MICROSYSTEMS, INC. OR NEXT COMPUTERS, INC. MAY MAKE IMPROVEMENTS AND/OR
CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION
AT ANY TIME.

747917_NineInchRule.eps ¬

Table of Contents
1. Overview of    OpenStep

1.1 How OpenStep Fits Into Project DOE
1.2 How OpenStep Fits Into the Solaris System
1.3 For Whom is this Paper Written?
1.4 How this Paper is Organized
1.5 Recommended Books to Help Make Porting Easier

2. Comparing OpenStep and NEXTSTEP Release 3.2
2.1 Interfaces to be Modified for OpenStep

Application Kit
Common Classes
Database Kit
Display PostScript
Distributed Objects System
Indexing Kit
Mach Kit
Objective C Run-Time System

2.2 Interfaces Not Available to OpenStep Developers
3. Preparing for OpenStep on Solaris

3.1 Mach and UNIX Compatibility and Differences
3.2 Developing New OpenStep Applications Using NEXTSTEP Release 3.2
3.3 Preparing Existing NeXT Applications without Mach Functions
3.4 Preparing Existing NeXT Applications with Mach Functions
3.5 Mach Functions for Which a Similar UNIX Facility Exists

Mach Virtual Memory

Mach Tasks
Mach Kernel Threads and C-threads
Mach InterProcess Communication (IPC)

3.6 Mach Functions that Do Not Map Directly to UNIX Facilities
617471_NineInchRule.eps ¬

1. Overview of OpenStep
OpenStep is a specification currently under development by NeXT Computer
with support from SunSoft. This specification will be published no later than
June 30, 1994.
The OpenStep specification, based on NEXTSTEP Release 3.2, will provide
application portability across multiple implementations of OpenStep, whether
based on NEXTSTEP, Solaris, or another implementation developed
independently. There are two differences between OpenStep and the
NEXTSTEP product:
1. A number of interfaces that are part of NEXTSTEP Release 3.2 will be

excluded from OpenStep.
2. A number of interfaces that are part of NEXTSTEP Release 3.2 will be

modified for OpenStep.
Both SunSoft and NeXT Computer will produce OpenStep implementations
shortly after the specification is published. Other vendors are also expected

to produce OpenStep-compliant implementations.

1.11.1 How OpenStep Fits Into Project DOE
The Project DOE technology represents SunSoft's support of open systems in
the new object paradigm. Project DOE technology is a major SunSoft initiative
to bring the leverage of open systems to the application arena; greatly
increasing the same open systems benefits achieved in Sun's hardware and
UNIX SVR4 products. It extends the Solaris model with the full range of
capabilities, services and partnerships required by an enterprise-ready,
distributed object environment.   
Project DOE technology enables you to create new kinds of applications
based on the distributed object model. Applications, in general, are built
differently when using Project DOE technology.
When designing an application for the Project DOE environment, you must
define and use standardized interfaces for subcomponents of an application.
In the object paradigm, the developer assembles components into
applications (objects). This means it is the developer, not the user, who
decides which components inter-operate.
Through Project DOE technology, SunSoft has a major strategic commitment
to deliver the power of the distributed object paradigm with an evolutionary
growth path for current applications. Project DOE technology encourages the
innovation and rapid development of software to meet user application
needs. Its focus is on the distributed architecture to structure computer

resources to meet these requirements.
Project DOE essentially consists of two parts: an OMG-compliant distributed
infra-structure and an OpenStep-compliant application environment based on
NeXTSTEP 3.2.
OpenStep is a major portion of Project DOE and will greatly accelerate the
delivery of the Project DOE object-oriented technology. The OpenStep
technology will be integrated with SunSoft's distributed object infrastructure,
enabling fully-distributed enterprise-wide object applications. The NEXTSTEP
technology is proven and well established as an effective set of object
interfaces; and the NEXTSTEP application environment is widely acclaimed to
yield the highest application development productivity in the industry. The
OpenStep specification is complementary with the OMG CORBA standard.
CORBA is also an X/Open XPG4 Preliminary Specification. In addition, all of
the Common Open Software Environment (cose) partners have embraced the
OMG standards and pledged to deliver products based on them. NeXT and
SunSoft will work together to propose the entire OpenStep specification to
the appropriate industry standards body, such as OMG or X/Open, for
adoption as a vendor-independent specification.

1.2 How OpenStep Fits Into the Solaris System
SunSoft is also fully committed to the success of cose and the common
desktop environment (CDE). As shown in Figure 1-1, the new object-oriented
application environment will co-exist on Solaris systems with the cose/CDE
environment. Applications written to the OpenStep specification on Solaris

will inter-operate with CDE applications.

paste.tiff ¬
Figure 1-1 OpenStep on Solaris

1.3 For Whom is this Paper Written?
There is no single development environment that is perfect for everybody.
The benefit of the OMG architecture is that it allows the easy integration of
components developed in different development environments (different
languages, different underlying systems, and from different vendors).
This paper discusses some of the issues developers need to consider when
using the SunSoft OpenStep Developer Starter Kit to develop new
applications for, or port existing applications to, OpenStep on Solaris. The
SunSoft OpenStep Developer's Starter Kit is based on the NEXTSTEP Release
3.2 Developer Kit and provides facilities that are available in NEXTSTEP
Release 3.2. However, some of these facilities are either not available in
OpenStep on Solaris, or are available with different interfaces in OpenStep on
Solaris. This paper highlights some of these differences in functionality.
This paper assumes familiarity with UNIX, Mach, and NEXTSTEP.
CautionÐThis paper is not intended to be a transition guide to the OpenStep
development environment. The purpose of this paper is to provide
development guidelines that will make it easier for you to port your
applications to the OpenStep environment on Solaris when it becomes

available. The OpenStep Developer Starter Kit is not guaranteed to be
upwardly compatible with the OpenStep release. All OpenStep application
programming interfaces (APIs) and formats are subject to change. Also, some
features that are part of the OpenStep Developer Starter Kit may either not
be available in OpenStep on Solaris, or will be available with different
interfaces.

1.4 How this Paper is Organized
This paper is organized in two sections: ªComparing OpenStep and NEXTSTEP
Release 3.2 Functionsº and ªPreparing for OpenStep on Solaris.º

1.5 Recommended Books to Help Make Porting Easier
Solaris Porting Guide by SunSoft ISV Engineering, Michele Ann Goodman,
Manoj Goyal, and Robert A. Massoudi (Published by SunSoft Press and PTR
Prentice Hall, ISBN 0-13-030396-8. This book is available at local bookstores,
or can be ordered directly from Prentice Hall by calling (201) 592-2863.
224817_NineInchRule.eps ¬

1.5 2.Comparing OpenStep and NEXTSTEP Release

3.2
The OpenStep specification is being derived from NEXTSTEP Release 3.2. The
specification is still under development but its general outline is clear. From
the user's point of view, an OpenStep implementation will be identical to
NEXTSTEP Release 3.2; from the developer's point of view, the programming
environments will be similar, but some differences will be evident.
The differences between the OpenStep and the NEXTSTEP Release 3.2 APIs
fall into two groups:
1. Interfaces that are part of NEXTSTEP Release 3.2 but will be modified for

OpenStep.
2. Interfaces that are part of NEXTSTEP Release 3.2, but will not be available

to OpenStep developers.
This section describes these differences.
CautionÐAll OpenStep application programming interfaces (APIs) and
formats are subject to change.

 Co 2.1 Interfaces to be Modified for OpenStep
Only minor API differences exist in the software that OpenStep and NEXTSTEP
Release 3.2 have in common. The modifications were motivated by a goal to
make OpenStep APIs as clear, powerful, and consistent as possible.
· OpenStep defines only the best approach to accomplish a task.

· OpenStep uses operating system-independent APIs.
· A consistency in names for similar methods prevail.
The similarities and differences between the OpenStep and NEXTSTEP
Release 3.2 components are summarized in Table 2±1, and discussed in more
detail in the following subsections.

Table 2±1    Comparing Components
892825_NineInchRule.eps ¬
OpenStep Component Compared to NEXTSTEP Release3.2
Component
Application Kit Relatively minor changes throughout:

API refinement and regularization
Common Classes Enhanced functionality

Database Kit Minor modifications
Display PostScript Assumes Adobe's Display PostScriptä client

library; Includes NEXTSTEP Release 3.2
compositing operators

Distributed Objects System Minor modifications
Indexing Kit Storage and B-tree components retained;

file system indexing component removed.
Mach Kit Minor modifications
Objective C Run-time System Minor modifications
434131_NineInchRule.eps ¬

OpenStep will provide tools to help you update your NEXTSTEP source code

to these new programming interfaces.
NoteÐNEXTSTEP development tools (such as Interface Builder, Project
Builder, the Objective C++ compiler, and the debugger) are not discussed in
this paper because they are not part of the OpenStep specification.

Application Kit
The Application Kit defines the essential components, structure, and
functionality of a NEXTSTEP application. The objects it defines are:
· Manage event-handling, drawing, and printing
· Provide standard user-interface components (such as Windows, Buttons,

Font panels, and Text objects)
· Provide text-editing functionality with Text object, spell-checker, and font

panel
· Coordinate inter-application communication: cut-and-paste, drag-and-

drop, inter-application services, and object-linking capabilities

In OpenStep
The OpenStep Application Kit is very similar to the NEXTSTEP Application Kit
except for the following changes:
· Minor API refinements throughout
· Removal of obsolete classes such as Listener, Speaker, and NXJournaler

Header Location

/NextDeveloper/Headers/appkit

Common Classes
The Common Classes define objects for managing data. Primary classes in
this group include HashTable, List, and Storage.

In OpenStep
The OpenStep version of the Common Classes extends the functionality of
the NEXTSTEP Common Classes.

Header Location
/NextDeveloper/Headers/objc

Database Kit
The Database Kit is a set of object-oriented resources you use to create
applications that will work with industry-standard database servers such as
those provided by Oracle Corporation and Sybase, Inc. The Database Kit
allows you to design front-end applications that are easy to build and
maintain, that can communicate with other applications, and that draw upon
the standard interface features used by all NEXTSTEP applications.

In OpenStep
The OpenStep version of the Database Kit is similar to the NEXTSTEP version

of the Database Kit except for minor refinements in the API.

Header Location
/NextDeveloper/Headers/dbkit

Display PostScript
The Display PostScript client library, developed by NeXT Computer and Adobe
Systems Incorporated, extends the PostScript language and adapts it to the
interactive requirements of the screen. The NEXTSTEP implementation
extends the Display PostScript language further by adding operators for
window management, compositing, and transparency.

In OpenStep
The OpenStep specification assumes the existence of Adobe's Display
PostScript client library. OpenStep adds the NEXTSTEP compositing and
transparency operators to this API. OpenStep does not include the NEXTSTEP
window management operators, since the Application Kit provides access to
this functionality at a more appropriate level.

Header Location
/NextDeveloper/Headers/dpsclient

Distributed Objects System

The Distributed Objects System provides a straightforward way for
applications to communicate with one another using the same Objective C
messaging that is used within a single application. The applications can
reside on different machines across a network.

In OpenStep
The API of the Distributed Objects System is similar in OpenStep and
NEXTSTEP; however, implementations differ because of the different
underlying operating systems.

Header Location
/NextDeveloper/Headers/remote

Indexing Kit
At the lowest level, the Indexing Kit provides storage and retrieval
capabilities (based on a B-tree algorithm) for untyped data. Built upon this
layer are facilities for indexing and searching files in the file system.

In OpenStep
OpenStep includes the storage and B-tree components of the Indexing Kit; it
does not include the file system searching facility (as declared in the header
file /NextDeveloper/Headers/indexing).

Header Location

/NextDeveloper/Headers/btree
/NextDeveloper/Headers/store

Mach Kit
The Mach Kit provides an object-oriented interface to some of the features of
the underlying operating system. It is used primarily in conjunction with the
Distributed Objects System to enable the passage of messages between
processes.

In OpenStep
The OpenStep and NEXTSTEP versions of the Mach Kit API are similar, with
the exception that the Mach-specific API has been removed. OpenStep will
make greater use of this kit to ensure application portability.

Header Location
/NextDeveloper/Headers/machkit

Objective C Run-Time System
The Objective C run-time functions are a kind of operating system for the
Objective C language, implementing its messaging system and enabling
dynamic loading and archiving of objects.

In OpenStep

The OpenStep and NEXTSTEP versions of the Objective C run-time system
have identical functionality; however, the Mach-specific run-time functions
have been removed from the OpenStep version.

Header Location
/NextDeveloper/Headers/objc

 Co 2.2 Interfaces Not Available to OpenStep
Developers

Several of the NEXTSTEP kits and software libraries that are part of NEXTSTEP
Release 3.2 will not be available to OpenStep developers. These kits either
are too new to include in a standard for an object-oriented application layer,
or they address features specific to hardware supplied by NeXT Computer.
Table 2±2 lists these kits and software libraries.

Table 2±2    Kits and Software Libraries Not Available in OpenStep
113450_NineInchRule.eps ¬
Name of Kit Name of Software Library
NetInfo Kit MIDI Driver API
Driver Kit Novell NetWare networking
3D Graphics Kit Sound Kit and Sound functions

Interface Builder API

Preferences API
312899_NineInchRule.eps ¬

NoteÐThis list is subject to change.
387538_NineInchRule.eps ¬

2.1    3. Preparing for OpenStep on Solaris

2.1    3.1 Mach and UNIX Compatibility and Differences
Mach is the operating system of all systems that run the NEXTSTEP product.
Although implemented differently than UNIX4.3BSD, it provides UNIX4.3BSD
compatibility. Mach system calls are upwardly compatible with UNIX4.3BSD
system calls; and Mach also supports UNIX4.3BSD commands. However,
while Mach retains UNIX4.3BSD functionality, it departs from current UNIX
design. Both Mach's compatibility with UNIX4.3BSD and its differences from
the UNIX4.3BSD are important factors to consider when preparing
applications for use in the OpenStep environment.

3.1    3.2 Developing New OpenStep Applications Using
NEXTSTEP Release 3.2

If you are developing new applications using NEXTSTEP Release 3.2, use the
BSD 4.3 functions provided as part of Mach whenever possible. If you must
use Mach functions, try to isolate them into modules. Isolating Mach functions
in this manner will make it easier for you to identify and replace this code
when you port to OpenStep on Solaris.
See the "Preparing Existing NeXT Applications with Mach Functions" section
for information about some of the porting issues you will need to resolve
when porting your application to Solaris if your application includes Mach
functions.
NoteÐTo assure that your application ports easily to OpenStep on Solaris, we
strongly recommend that you do not use Mach functions. No guarantee is
made that you will not have to rewrite the sections of your code that contain
Mach functions. We recommend the "Solaris Porting Guide" for any porting
issues that are related to porting UNIX 4.3BSD to Solaris.

3.1    3.3 Preparing Existing NeXT Applications without
Mach Functions

If your existing applications are written using NEXTSTEP Release 3.2 but do
not contain any Mach functions, there are no special porting issues relating to
the NEXTSTEP functionality to consider at this time. The OpenStep
specification will address how these applications are to be ported.

3.1    3.4 Preparing Existing NeXT Applications with Mach
Functions

If your existing applications are written using NEXTSTEP Release 3.2 and
contain any Mach functions, there are a number of special porting issues
relating to the Mach functionality that you will need to consider. This section
includes a list of some of the Mach functions that will make porting your
application to OpenStep on Solaris difficult, and provides guidelines to help
you port this code from NEXTSTEP to OpenStep on Solaris.

3.1    3.5 Mach Functions for Which a Similar UNIX Facility
Exists

This section includes a list of some of the Mach functions for which a similar
UNIX facility exists.
NoteÐThe Solaris recommendation appears in italics for emphasis.

Mach Virtual Memory
The Mach virtual memory facilities give a program direct access to pages or
objects of virtual memory. A program can allocate, deallocate and protect
these pages. Unlike memory allocated with the Unix malloc() call, allocation
may occur anywhere in the address space of a Mach task. In fact, Mach

allows a program to allocate virtual memory in the address space of another
task. Solaris gives a program access to virtual memory objects with the
mmap(2) system call, which establishes a mapping between a process's
address space and a virtual memory object.

Both Mach and Solaris allow the program to specify how virtual memory is to
be accessed, whether or not it is to be shared, and how the pages are to be
protected. If you adhere to the basics of virtual memory allocation,
deallocation and protection, your code will port with a minimum of effort.
Mach also provides a function map_fd() which maps a file into virtual
memory. Use the Solaris mmap(2) call to achieve similar functionality in
Solaris.

Table 3±1 lists the Mach virtual memory functions and the names of the
corresponding functions in Solaris.

Table 3±1    Allocating, De-allocation, and Accessing Virtual Memory
516645_NineInchRule.eps ¬

Similar Solaris
Mach Function Description Function

vm_allocate() Allocate virtual memory mmap(2)
vm_deallocate() Deallocate virtual memory munmap(2)
vm_protect() Specify protection on a range of virtual memory pages mmap(2),

mprotect(2)
vm_inherit() Specify inheritance characteristics of virtual memory not applicable
vm_read() Read virtual memory of the specified task not applicable

vm_write() Write virtual memory of the specified task not applicable
vm_copy() Copy virtual memory of specified task not applicable
vm_region() Return description of characteristics of a range of virtual memory not
applicable
vm_set_policy() Specify paging policy for a region of virtual memory vm_advise(3)
vm_statistics() Examine virtual memory statistics none
337092_NineInchRule.eps ¬

CautionÐUsing Mach-specific memory protections via vm_protect(), or
using the Mach function vm_set_policy() to affect how the kernel treats the
memory may make porting to Solaris difficult.

Mach Tasks
In Mach, an executing program consists of at least one task and some
number of threads. There is a clear distinction between a task and its
threads. The task contains resources associated with the program but is not
an executing entity. Mach threads are the entities associated with execution.
However, a UNIX process contains resources and it also executes. A single
Mach task with one thread is the approximate equivalent of a single UNIX
process. (In fact, the fork() system call available under Mach does both
create a task and start a new thread in that task.)
To make your Mach code more portable to Solaris, use the process related
calls whenever possible. If your application needs to execute multiple
threads, see the "Mach Kernel Threads and C-threads" section of this

document.
For portability, you should avoid the Mach task functions listed in Table 3±2
whenever possible.

Table 3±2    Mach Task Functions
HalfRule.eps ¬
task_assign()
task_assign_default()
task_by_unix_pid()
task_create()
task_get_assignment()
task_get_special_port()
task_set_special_port()
task_self()
task_notify()
task_get_notify_port()
task_set_notify_port()
task_get_exception_port()
task_set_exception_port()
task_get_bootstrap_port()
task_set_bootstrap_port()

task_info()
task_priority()
task_resume()
task_suspend()
task_terminate()
636863_HalfRule.eps ¬

NoteÐThe listed functions, task_self() and task_notify() are actually
references to special communications ports in Mach and are frequently used
in Mach functions. If you use many Mach functions, you will probably not be
able to avoid their usage; however, task_self() is roughly analogous to
using getpid() under Solaris.

Mach Kernel Threads and C-threads
As mentioned in the "Mach Tasks" section, a Mach program consists of some
number of tasks and threads. The Mach thread is the basic unit of execution
that is scheduled to run in the kernel. Solaris provides a similar concept with
its lightweight processes (LWPs) as the scheduled unit of execution. The
Solaris model also provides userlevel threads as lightweight abstractions. The
Solaris threads library implements its threads via LWPs. The library
automatically maps threads onto some number of LWPs. In addition, it gives
the program facilities to alter the mapping of threads on LWPs if this is
desired.
Mach provides two programmatic interfaces to its threads, the lower level API
to Mach kernel threads and a higher level interface known as C-threads. The

C-threads API is a more portable C interface which implements such concepts
as:
· Forking and joining of threads
· Critical region locks
· Thread synchronization primitives
The Solaris threads library provides constructs to manipulate threads that
correspond closely to the Cthreads library. If you write an application that
uses threads on Mach, use the C-threads API instead of the Mach kernel
thread interface whenever possible.
Table 3±3 lists the lowlevel Mach thread functions that you should avoid to
make your code more portable.
Table 3±3    Mach Kernel Thread Functions
412132_HalfRule.eps ¬
thread_abort()
thread_assign()
thread_assign_default()
thread_create()
thread_get_assignment()
thread_get_special_port()
thread_set_special_port()
thread_self()
thread_reply()

thread_get_reply_port()
thread_set_reply_port()
thread_get_exception_port()
thread_set_exception_port()
thread_get_state()
thread_set_state()
thread_info()
thread_policy()
thread_priority()
thread_max_priority()
thread_resume()
thread_suspend()
thread_switch()
thread_terminate()
458868_HalfRule.eps ¬

NoteÐThe listed functions, thread_self() and thread_reply() are actually
references to special communications ports in Mach and are frequently used
in Mach functions. If you use many Mach functions, you will probably not be
able to avoid their usage; however, thread_self() is analogous to
thr_self() under Solaris.

Table 3±4 lists the Mach C-threads API and the corresponding threads library
functions available under Solaris.

Table 3±4    Mach C-threads and Solaris Thread Functions
277072_NineInchRule.eps ¬

Solaris Threads
Mach C-threads Function Description

Functions
condition_alloc() Allocate condition variable not applicable
condition_broadcast() Broadcast a condition cond_broadcast()
condition_clear() Clear a condition cond_destroy()
condition_init() Initialize a condition cond_init()
condition_free() Free condition variable not applicable
condition_name() Get name of a name none
condition_set_name() Set name of a condition none
condition_signal() Signal a condition cond_signal()
condition_wait() Wait on a condition cond_wait()

cond_timedwait()
cthread_abort() Interrupt a thread thr_kill()
cthread_count() Number of threads in the task none
cthread_data() Get thread specific data thr_getspecific()
cthread_set_data() Set thread specific data thr_keycreate()

thr_setspecific()

cthread_detach() Detach a thread thr_create()
cthread_errno() Get errno for current thread errno variable is
valid for each thread
cthread_exit() Exit a thread thr_exit()
cthread_fork() Fork a new thread thr_create()
cthread_join() Join threads thr_join()
cthread_limit() Get maximum number of threads in this task

thr_getconcurrency()
cthread_set_limit() Set maximum number of threads in this task

thr_setconcurrency()
cthread_name() Get the name of this thread none
cthread_set_name() Set the name of the thread none
cthread_priority() Set base priority of a thread thr_setprio()
cthread_max_priority() Set maximum priority of a thread none
cthread_self() Return callers thread identifier thr_self()
cthread_set_errno_self() Set errno for current thread errno
cthread_thread() Return mach thread identifier for this c-thread thr_self()
cthread_yield() Yield to another thread thr_yield()
mutex_alloc() Allocate a mutex variable not applicable
mutex_clear() Clear a mutex variable mutex_destroy()
mutex_free() Free memory associated with a mutex variable not applicable

mutex_init() Initialize mutex variable mutex_init()
mutex_lock() Lock a mutex mutex_lock()
mutex_name() Get the name of a mutex none
mutex_set_name() Set the name of a mutex none
mutex_try_lock() Try a mutex lock mutex_trylock()
mutex_unlock() Unlock a mutex mutex_unlock()
531515_NineInchRule.eps ¬

In addition to these thread-related calls, Solaris provides a set of functions for
manipulating semaphores in threads and another set for implementing
multiple reader, single writer locks. These functions are shown in Table 3±5.

Table 3±5 Other Solaris Thread Functions
433062_HalfRule.eps ¬
sema_init()
sema_destroy()
sema_wait()
sema_trywait()
sema_post()
rwlock_init()
rwlock_destroy()
rw_rdlock()

rw_wrlock()
rw_unlock()
rw_trydlock()
rw_trywrlock()
746188_HalfRule.eps ¬

Mach InterProcess Communication (IPC)
Mach is a message-based operating system. All communication between two
tasks, or between a task and the kernel, is via Mach messaging. Mach
introduces the concept of a port or communication channel to achieve
messaging. All messaging is accomplished by sending a message to a port.
Mach extends the local IPC concept to seamlessly message not only to
another task on the same system but to a task on another host across a
network. The fact that the receiver may be remote is transparent to the
sender. In addition, Mach integrates the virtual memory system with its
concept of IPC. Mach tasks can send large amounts of message data to
another task efficiently because the data is merely mapped into the
receiver's address space, no data is physically copied.
For portability, use either BSD IPC facilities available under Mach or the
NEXTSTEP Distributed Object interface instead of using the Mach IPC directly.
The basic IPC mechanisms available under Solaris are: pipes, named pipes,
sockets, signals, messages, semaphores, and shared memory.
Solaris also provides remote procedure call facilities for distributed
application: currently, RPC and Transport Independent RPC are available, as

well as the ToolTalkâ service, the standard messaging facility for CDE.

3.1    3.6 Mach Functions that Do Not Map Directly to
UNIX Facilities

This section includes a list of the Mach functions that do not map directly to
UNIX facilities. If you use the Mach functions listed in this section, it will make
porting your application to OpenStep on Solaris difficult.
NoteÐOpenStep on Solaris developers are aware of these issues and working
to find a solution for them. However, no guarantee is made that you will not
have to rewrite your code if your application contains these Mach functions.

Mach Port Functions
As noted in the "Mach InterProcess Communication (IPC)" section, the Mach
port is the basic communication object. If you program directly to the Mach
IPC functions, you will not be able to avoid some use of the Mach port
functions. It is important to note that heavy dependence on the port concepts
may make your code difficult to port.
To make your code easier to port, you should only use simple port allocation
and deallocation to send a message whenever possible. The Mach port
functions are detailed in Table 3±6.

Table 3±6    Mach Port Functions
144270_HalfRule.eps ¬

port_allocate()
port_deallocate()
port_extract_receive()
port_extract_send()
port_insert_receive()
port_insert_send()
port_names()
port_rename()
port_set_add()
port_set_allocate()
port_set_backlog()
port_set_backup()
port_set_deallocate()
port_set_remove()
port_set_status()
port_status()
port_type()
bootstrap_check_in()
bootstrap_create_service()
bootstrap_info()

bootstrap_look_up()
bootstrap_look_up_array()
bootstrap_register()
bootstrap_status()
bootstrap_subset()
netname_check_in()
netname_check_out()
netname_look_up()
544575_HalfRule.eps ¬

Mach Exception Handling
Mach provides a model for exception handling that is message-based.
Exceptions are sent to a thread on a special exception port. This exception
handling is unlike Solaris exception handling, which is based on SVR/4
signals. Avoid the Mach exception handling model whenever possible.

467318_NineInchRule.eps ¬

SunSoft_on-line_back_address.tiff ¬

895143_NeXT_on-line_address.tiff ¬

